Solution Manual Advanced Mechanics of Materials and Applied Elasticity Ugural Fenster 6th Edition – Updated 2024

$25.00

Solution Manual Advanced Mechanics of Materials and Applied Elasticity Ugural Fenster 6th Edition
Complete Solution Manual With Answers
Sample Chapter is Posted Below

 

 

From Advanced Mechanics of Materials and Applied Elasticity, 6/e, by Ansel C. Ugural and Saul K. Fenster (9780135793886)

Copyright © 2020 Pearson Education, Inc. All rights reserved.CONTENTS

Chapter 1 Analysis of Stress 1

Chapter 2 Strain and Material Properties 48

Chapter 3 Problem in Elasticity 83

Chapter 4 Failure Criteria 111

Chapter 5 Bending of Beams 133

Chapter 6 Torsion of Prismatic Bars 166

Chapter 7 Numerical Methods 186

Chapter 8 Thick-Walled Cylinders and Rotating Disks 227

Chapter 9 Beams on Elastic Foundations 248

Chapter 10 Applications of Energy Methods 259

Chapter 11 Stability of Columns 284

Chapter 12 Plastic Behavior of Materials 309

Chapter 13 Stresses in Plates and Shells 335

The Solutions Manual to accompany the text Advanced Mechanics of Materials and

Applied Elasticity supplements the study of stress and deformation analyses developed in the

book. The main objective of the manual is to provide efficient solutions for problems dealing

with variously loaded members. This manual can also serve to guide the instructor in the

assignments of problems, in grading these problems, and in preparing lecture materials as well

as examination questions. Every effort has been made to have a solutions manual that can cut

through the clutter and is self – explanatory as possible thus reducing the work on the instructor.

It is written and class tested by the author, Ansel Ugural.

As indicated in its preface, the text is designed for the senior and/or first year graduate

level courses in stress analysis. In order to accommodate courses of varying emphasis,

considerably more material has been presented in the book than can be covered effectively in a

single three-credit course. The instructor has the choice of assigning a variety of problems in

each chapter. Answers to selected problems are given at the end of the text. A description of the

topics covered is given in the introduction of each chapter throughout the text. It is hoped that

the foregoing materials will help instructor in organizing his or her course to best fit the needs of

his or her students.

Ansel C. Ugural

Holmdel, NJ

iii

From Advanced Mechanics of Materials and Applied Elasticity, 6/e, by Ansel C. Ugural and Saul K. Fenster (9780135793886)

Copyright © 2020 Pearson Education, Inc. All rights reserved.CHAPTER 1

SOLUTION (1.1)

We have

A

3 2 50 75 3.75(10 ) m

= × = ,

50=

o

θ , and AP

=

σ.

x

Equations (1.11), with o

θ :

50=

3

σ

= σ

=

)10(700 2

o

=

σ

cos

413.050

x 18.110

x

x

or 6.35 kN

P=

P

and

3

τ σ σ = = = =

x y ‘ ‘ 560(10 ) sin 50 cos50 0.492 131.2o o

P

x x

Solving

4.27 kN

P= all P=

______________________________________________________________________________________

SOLUTION (1.2)

Normal stress is

P

3 125(10 )

σ ×

= = =

x A

0.05 0.05 50 MPa

( a ) Equations (1.11), with o

θ :

20=

2

50cos 20 44.15 MPao

x σ = =

x y τ = − ‘ ‘ 50sin 20 cos 20 16.08 MPao o

= −

2

σ = + =

y

50cos (20 90 ) 5.849 MPao o

5.849 MPa

y’

16.08 MPa

44.15 MPa

x’

20 o

x

( b ) Equations (1.11), with θ :

o 45=

2

50cos 45 25 MPao

x σ = =

x y τ = − ‘ ‘ 50sin 45 cos 45 25 MPao o

= −

2

σ = + =

y

50cos (45 90 ) 25 MPao o

25 MPa

25 MPa

y’

25 MPa

x’

45 o

x

______________________________________________________________________________________

1

From Advanced Mechanics of Materials and Applied Elasticity, 6/e, by Ansel C. Ugural and Saul K. Fenster (9780135793886)

Copyright © 2020 Pearson Education, Inc. All rights reserved.______________________________________________________________________________________

SOLUTION (1.3)

From Eq. (1.11a),

σ

75

σ

= = = −

100 MPax

x

2 2

θ

cos cos 30

o

For o

50=

θ , Eqs. (1.11) give then

2

x σ = − 100cos 50 41.32 MPao

= −

τ

)100(−=

sin

50

o

cos

yx 50

o

49.24 MPa=

Similarly, for o

θ :

140=

2

x σ = − 100cos 140 58.68 MPao

= −

x y τ = −

‘ ‘ 49.24 MPa

41.32 MPa

58.68 MPa

50 o

49.24 MPa

______________________________________________________________________________________

SOLUTION (1.4)

Refer to Fig. 1.6c. Equations (1.11) by substituting the double angle-trigonometric relations,

or Eqs. (1.18) with 0=

σ and 0=

τ , become

y

xy

1

1

θσ 2

1

cos

=

sin

x += and θστ 2

x

2

x

2

yx

x

2

or

1(20 2 θ

+= A

P and θ 2

cos

)2

P

=

10 2 A

sin

The foregoing lead to

sin

2

2=− θ (a)

cos

12

By introducing trigonometric identities, Eq. (a) becomes

4 2

cosin

=− θ or 21

2

cos

0

tan=

θ . Hence

θ

56.26=

o

Thus,

gives

2(1300) 20 (1 0.6) P = +

P=

32.5 kN

It can be shown that use of Mohr’s circle yields readily the same result.

______________________________________________________________________________________

SOLUTION (1.5)

Equations (1.12):

σ

1

P

3

= = = −

150(10 ) 76.4 MPa

A

π

(50)

2

4

P

τ = =

max 38.2 MPa

2

A

______________________________________________________________________________________

2

From Advanced Mechanics of Materials and Applied Elasticity, 6/e, by Ansel C. Ugural and Saul K. Fenster (9780135793886)

Copyright © 2020 Pearson Education, Inc. All rights reserved.______________________________________________________________________________________

SOLUTION (1.6)

Shaded transverse area:

3 2 2 2(10)(75) 1.5(10 ) mm A at= = =

Metal is capable of supporting the load

P A σ

6 3 90(10 )(1.5 10 ) 135 kN

= = × =

Apply Eqs. (1.11):

P

6 2

o

σ

= =

P=

x

‘ 3 25(10 ) (cos 55 ) 1.5(10 )

, 114 kN

6

P

τ

= = −

x y

12(10 ) sin 55 cos55

o o

P=

‘ ‘ 3

, 38.3 kN

1.5(10 )

Thus,

all P=

38.3 kN

______________________________________________________________________________________

SOLUTION (1.7)

Use Eqs. (1.11):

P

6 2

o

σ

= =

P=

x

‘ 3 20(10 ) (cos 40 ) 1.5(10 )

, 51.1 kN

P

6

τ

= = −

x y

8(10 ) ‘ ‘ 3

sin 40 cos 40

o o

1.5(10 )

P=

, 24.4 kN

Thus,

all P=

24.4 kN

______________________________________________________________________________________

SOLUTION (1.8)

A = × =

15 30 450 mm

2

Apply Eqs. (1.11):

3

2

o

x σ

= =

‘ 6

120(10 ) (cos 40 ) 156 MPa

450 10

×

3

x y τ

= − = −

120(10 ) sin 40 cos 40 131 MPa

o o

‘ ‘ 6

450 10

×

______________________________________________________________________________________

SOLUTION (1.9)

A

We have 6 2 450(10 ) m

= . Use Eqs. (1.11):

3

2

o

x σ

= = −

‘ 6

100(10 ) (cos 60 ) 55.6 MPa

450 10

×

3

x y τ

= − =

100(10 ) sin 60 cos 60 96.2 MPa

o o

‘ ‘ 6

450 10

×

______________________________________________________________________________________

3

From Advanced Mechanics of Materials and Applied Elasticity, 6/e, by Ansel C. Ugural and Saul K. Fenster (9780135793886)

Copyright © 2020 Pearson Education, Inc. All rights reserved.______________________________________________________________________________________

SOLUTION (1.10)

θ

o 1309040 =+=

o

3

P

150(10 )

σ

= = − = −

31.83 MPa

x A π

2 2

(0.08 0.07 )

Equations (1.11):

2

x σ = − 31.83cos 130 13.15 MPao

= −

x y τ = ‘ ‘ 31.83sin130 cos130 15.67 MPao o

= −

x’

13.15 MPa

130 o

15.67 MPa

x

Plane of weld

y’

______________________________________________________________________________________

SOLUTION (1.11)

Use Eqs. (1.14),

0)()2()2( =+−+ x Fx

x

xy

0)0()2()( 2 =+−+− y

y

yz

Fx

0)2()0()4( =+−+− z Fz

z

xy

Solving, we have (in 3

MN m ):

xFx 23 +−= 2 2

xy

y F x y yz = − + + z

Fz += 4 (a)

xy

Substituting x=-0.01 m, y=0.03 m, and z=0.06 m, Eqs. (a) yield the following values

F F F= = =

3 3 3 29.4 kN m 14.5 kN m 58.8 kN m x y z

Resultant body force is thus

2 2 2 3

F F F F = + + =

67.32 kN m

x y z

______________________________________________________________________________________

SOLUTION (1.12)

Equations (1.14):

=+− yc

04,02 1

ycyc

1

1

zc

=+ zc

3

,0 3

0

0 =+

No. Eqs. (1.14) are not satisfied.

______________________________________________________________________________________

4

From Advanced Mechanics of Materials and Applied Elasticity, 6/e, by Ansel C. Ugural and Saul K. Fenster (9780135793886)

Copyright © 2020 Pearson Education, Inc. All rights reserved.______________________________________________________________________________________

SOLUTION (1.13)

( a ) ( b ) No. Eqs. (1.14) are not satisfied.

Yes. Eqs. (1.14) are satisfied.

______________________________________________________________________________________

SOLUTION (1.14)

Eqs. (1.14) for the given stress field yield:

zyx F

0=

______________________________________________________________________________________

SOLUTION (1.15)

y

y’

τ ∆

A

‘ ‘ x y

σ ∆

A

x

40 A cos20o

50 A cos20o 20o

x’

20o

x

50 A sin20o

60 A sin20o

F A A σ = ∆ + − ∆

2 2

‘ ‘ 0 : 40cos 20 60 sin 20o o

x x

A − ∆ =

2(50 sin 20 cos 20 ) 0o o

35.32 7.02 32.14 3.8 MPa

x σ = − + + =

F A A τ = ∆ − ∆

‘ ‘ ‘ 0 : 40 sin 20 cos 20o o

y x y

2 60 sin 20 cos 20 50 cos 20o o o

A A − ∆ − ∆

2 50 sin 20 0o

A + ∆ =

‘ ‘ 12.86 19.28 44.15 5.85 70.4 MPa

x y τ = + + − =

______________________________________________________________________________________

SOLUTION (1.16)

50 A cos25o

15 A cos25o

y’

15 A sin25o

25o

τ ∆

A

‘ ‘ x y

90 A sin25o

σ ∆

A

x

x’

F A A σ = ∆ + ∆

2

‘ ‘ 0 : 50 cos 25o

x x

A A − ∆ − ∆ =

2 90 sin 25 2(15 sin 25 cos 25 ) 0o o o

41.07 16.07 11.49 13.5 MPa

x σ = − + + = −

(CONT.)

______________________________________________________________________________________

5

From Advanced Mechanics of Materials and Applied Elasticity, 6/e, by Ansel C. Ugural and Saul K. Fenster (9780135793886)

Copyright © 2020 Pearson Education, Inc. All rights reserved.______________________________________________________________________________________

1.16 (CONT.)

F A A τ = ∆ − ∆

‘ ‘ ‘ 0 : 50 sin 25 cos 25o o

y x y

2 90 sin 25 cos 25 15 cos 25o o o

A A − ∆ − ∆ 2 15 sin 25 0o

A + ∆ =

‘ ‘ 19.15 34.47 12.32 2.68 63.3 MPa

x y τ = + + − =

______________________________________________________________________________________

SOLUTION (1.17)

y

y’

‘ ‘ x y τ

x σ

50 MPa 20o

60 MPa θ

x’

x

θ=20o

80 MPa

o o

1 1 ( 40 60) ( 40 60)cos 40 50sin 40 2 2

x σ = − + + − − +

10 38.3 32.1 3.8 MPa = − + =

x y τ = − − − +

‘ ‘

1 ( 40 60)sin 40 50cos 40

o o

2

32.14 38.3 70.4 MPa = + =

x’

y’

90 MPa

θ=115o

______________________________________________________________________________________

SOLUTION (1.18)

x σ

‘ ‘ x y τ

θ

25o

x

15 MPa

50 MPa

o o

1 1 (90 50) (90 50)cos 230 15sin 230 2 2

x σ = − + + −

20 45 11.5 13.5 MPa = − + = −

x y τ = − + −

‘ ‘

1 (90 50)sin 230 15cos 230

o o

2

53.62 9.64 63.3 MPa = + =

______________________________________________________________________________________

6

From Advanced Mechanics of Materials and Applied Elasticity, 6/e, by Ansel C. Ugural and Saul K. Fenster (9780135793886)

Copyright © 2020 Pearson Education, Inc. All rights reserved.______________________________________________________________________________________

SOLUTION (1.19)

Transform from 40o

θ= to 0

θ= . For convenience in computations, Let

160 MPa, 80 MPa, 40 MPa

θ= −

x y xy σ σ τ = − = − = and 40o

Then

1 1 ( ) ( )cos 2 sin 2 2 2x x y x y xy σ σ σ σ σ θ τ θ = + + − +

o o = − − + − + − + −

1 1 ( 160 80) ( 160 80)cos( 80 ) 40sin( 80 ) 2 2

166.3 MPa= −

x y x y xy τ σ σ θ τ θ = − − +

‘ ‘

1 ( )sin 2 cos 2

2

o o = − − + − + −

1 ( 160 80)sin( 80 ) 40cos( 80 )

2

32.4 MPa= −

So ‘ ‘ 160 80 166.3 73.7 MPa

y x y x σ σ σ σ = + − = − − + = −

For 0o

θ= :

y

73.7 MPa

32.4 MPa

166.3 MPa

x

______________________________________________________________________________________

SOLUTION (1.20)

1 4 tan 53.1

θ

o

= =

3

+ −

x σ

= +

45 90 45 90 cos106.2

o

2 2

67.5 6.28 73.8 MPa = + =

‘ ‘

x y τ

= − =

45 90 sin106.2 21.6 MPa

o

2

21.6 MPa

73.8 MPa

x’

53.1o

y’

x

______________________________________________________________________________________

7

From Advanced Mechanics of Materials and Applied Elasticity, 6/e, by Ansel C. Ugural and Saul K. Fenster (9780135793886)

Copyright © 2020 Pearson Education, Inc. All rights reserved.______________________________________________________________________________________

SOLUTION (1.21)

xy τ θ = =

0 70o

σ

(a) ‘ ‘

60 30 sin140

τ

= − = − o

x y

2

σ =

153.3 MPa

σ

(b)

x

σ σ

+ −

60 60

80 cos140

o

= = + 231 MPa

σ =

2 2

______________________________________________________________________________________

SOLUTION (1.22)

θ=

Equations(1.18) with 60o

, 110 MPa

x σ =

, 0

σ =

, 50 MPa

y

xy τ = give

1 1

x σ = + + =

‘ 2 2 (110) (110)cos120 50sin120 70.8 MPao o

1

x y τ = − + = −

‘ ‘ 2 (110)sin120 50cos120 72.6 MPao o

1 1

σ = − − =

‘ 2 2 (110) (110)cos120 50sin120 39.2 MPao o

y

______________________________________________________________________________________

SOLUTION (1.23)

θ=

Equations(1.18) with 30o

, 110 MPa

x σ =

, 0

σ =

, 50 MPa

y

xy τ = result in

1

x σ = + + =

‘ 2 (110) 55cos 60 50sin 60 125.8 MPao o

1

x y τ = − + = −

‘ ‘ 2 (110)sin 60 50cos 60 22.6 MPao o

1

σ = − − = −

y

‘ 2 (110) 55cos 60 50sin 60 15.8 MPao o

10 MPa

x

______________________________________________________________________________________

SOLUTION (1.24)

We have

x σ

x’

θ= + =

25 90 115o

x σ = −

10 MPa

‘ ‘ x y τ

θ

25o

σ =

y

30 MPa

y’

xy τ =

0

30 MPa

1 1 ( ) ( )cos 2 2 2 x x y x y σ σ σ σ σ θ = + + −

(a)

o = − + + − − =

1 1 ( 10 30) ( 10 30)cos 230 22.86 MPa 2 2

Thus,

w x σ σ = =

22.86 MPa

(CONT.)

______________________________________________________________________________________

8

From Advanced Mechanics of Materials and Applied Elasticity, 6/e, by Ansel C. Ugural and Saul K. Fenster (9780135793886)

Copyright © 2020 Pearson Education, Inc. All rights reserved.______________________________________________________________________________________

1.24 (CONT.)

(b) ‘ ‘

1 ( )sin 2

x y x y τ σ σ θ = − −

2

o

= − − − = −

1 ( 10 30)sin 230 15.32 MPa

2

So

w τ

w x y τ τ = = −

‘ ‘ 15.32 MPa

______________________________________________________________________________________

SOLUTION (1.25)

0 50 0 50

+ −

(a) 2 2

= = + +

σ τ

1

80 ( )

2 2

τ =

49 MPa

(b) 2 2

50 ( ) 49 55 MPa 2

τ

= + =

max

50 ‘ 25 MPa

σ = =

2

s θ

o

= − =

1 0 50 2 tan [ ] 27 2(49)

x y τ = + =

‘ ‘

50 sin 27 49cos 27 55 MPa

o o

2

Thus,

s θ =

‘ 13.5o

25 MPa

y’

25 MPa

x’

13.5o

x

55 MPa

______________________________________________________________________________________

SOLUTION (1.26)

80 MPa

40 MPa

θ=-30o

x

(CONT.)

______________________________________________________________________________________

9

From Advanced Mechanics of Materials and Applied Elasticity, 6/e, by Ansel C. Ugural and Saul K. Fenster (9780135793886)

Copyright © 2020 Pearson Education, Inc. All rights reserved.______________________________________________________________________________________

1.26 (CONT.)

+ −

o

x σ

= + − = − =

40 80 40 80 cos( 60 ) 60 10 50 MPa

2 2

σ = + =

60 10 70 MPa

y

o

xy τ

= − − = −

40 80 sin( 60 ) 17.32 MPa

2

70 MPa

70 MPa

50 MPa

50 MPa

+ =

17.32 MPa 20 MPa

2.68 MPa

+ −

2 2

50 70 50 70 ( ) 2.68 2 2

σ

= ± + 60 10.35 = ±

1,2

1 2 70.35 MPa 49.65 MPa σ σ = =

1 2(2.68) 2 tan [ ] 15 50 70

p θ

o

= = −

50 70 60

o o

x σ

= + − + −

cos( 15 ) 2.68sin( 15 ) 2

60 9.66 0.694 49.65 MPa= − − =

Thus,

p θ = −

” 7.5o

x

7.5o

49.65 MPa

70.35 MPa

______________________________________________________________________________________

SOLUTION (1.27)

60 MPa

τ

(MPa)

10

(60, 50)

20o

50 MPa

40 MPa

O

R

C

σ (MPa)

(CONT.)

α

(-40, -50)

40o

x’

______________________________________________________________________________________

10

From Advanced Mechanics of Materials and Applied Elasticity, 6/e, by Ansel C. Ugural and Saul K. Fenster (9780135793886)

Copyright © 2020 Pearson Education, Inc. All rights reserved.______________________________________________________________________________________

1.27 (CONT.)

1 50 tan 45

α

o

= =

50

1

2

R = + =

2 2 (50 50 ) 70.7

‘ ‘ sin85 (70.7) 70.4 MPao

x y τ = =

x σ = − =

10 cos85 (70.7) 3.84 MPao

______________________________________________________________________________________

SOLUTION (1.28)

τ (MPa)

50 MPa

15 MPa

25o

O

σ’=20

y’

α

R

(90, 15)

90 MPa

(-50, -15)

62.1o

x’, τ x’y’)

x’

σ (MPa)

63.3 MPa

90 MPa

25o

C

x

1 15 tan 12.1

α

o

= =

70

y’ 13.5 MPa

1

2

R = + =

2 2 (15 70 ) 71.6

‘ ‘ 71.6sin 62.1 63.3 MPao

x y τ = =

71.6cos 62.1 20o

x σ = − +

13.5 MPa= −

x

x’ 15 MPa

50 MPa

______________________________________________________________________________________

SOLUTION (1.29)

τ (MPa)

R =22.5

x’

R

90

σ =67.5

45 MPa

45 53.1o

O

C

σ (MPa)

x

90 MPa 106.2o

73.8o

x’

x’, −τ x’ y’ )

(CONT.)

______________________________________________________________________________________

11

From Advanced Mechanics of Materials and Applied Elasticity, 6/e, by Ansel C. Ugural and Saul K. Fenster (9780135793886)

Copyright © 2020 Pearson Education, Inc. All rights reserved.x’

140o

O

σ

60

C

R

σ (MPa)

______________________________________________________________________________________

1.29 (CONT.)

‘ ‘ 22.5sin 73.8 21.6 MPao

x y τ = =

67.5 22.5cos 73.8 73.8 MPao

x σ = + =

Sketch of results is as shown in solution of Prob. 1.20.

______________________________________________________________________________________

SOLUTION (1.30)

τ (MPa)

(a)

60 MPa

R σ = −

1 ( 60)

2

x’

σ

70o

x

σ

o

60 30 sin( 40 ); 153.3 MPa 2

τ σ

= − = − =

‘ ‘

x y

σ

o

60 80 60 [1 cos( 40 )] 2

σ

(b)

= = + − −

x

σ =

231 MPa

______________________________________________________________________________________

SOLUTION (1.31)

( a ) From Mohr’s circle, Fig. (a):

1 2 max 121 MPa 71 MPa 96 MPa σ σ τ = = − =

θ

o

−= θ

p 7.25’3.19′=

s

o

τ

(MPa)

τmax

A(100,60)

‘2 p θ

σ2 O

C

B

Figure (a)

By applying Eq. (1.20):

1

50

22,500

2

σ   = ± + = ±  

1,2 2 4 3600 25 96

or 1 2 121 MPa 71 MPa σ σ = = −

Using Eq. (1.19):

2

tan 15

p θ

12 −=−=

8.0

θ

o

−= θ

p 7.25’3.19′=

s

o

(CONT.)

______________________________________________________________________________________

12

From Advanced Mechanics of Materials and Applied Elasticity, 6/e, by Ansel C. Ugural and Saul K. Fenster (9780135793886)

Copyright © 2020 Pearson Education, Inc. All rights reserved.

σ (MPa)

σ1______________________________________________________________________________________

1.31 (CONT.)

( b ) From Mohr’s circle, Fig. (b):

1 2 max 200 MPa 50 MPa 125 MPa σ σ τ = = − =

θ

o

= θ

p 55.71’55.26′=

o

s

τ

(MPa)

τmax

σ2 O

σ (MPa)

C

σ1

A(150,-100)

p

Figure (b)

Through the use of Eq. (1.20),

1

500,22

σ

75 2

2,1 ±=+±=

[ ] 12575000,10

4

or

1 2 200 MPa 50 MPa σ σ = = −

tan=

Using Eq. (1.19), 342

p θ :

‘ 26.57 ‘ 71.57o o

p s θ θ = =

______________________________________________________________________________________

SOLUTION (1.32)

Referring to Mohr’s circle, Fig. 1.15:

σ

x (a)

+ +=

2121

σ 2

cos

θ

2

2

σ

y

+

2121

−=

σ 2

cos

θ

2

2

τ

21

=

yx (b)

σ 2

sin

θ

2

From Eqs. (a),

21′ σ +=+ yx

cos 2

2

2 =+ sin

By using 12

2

=⋅=−⋅ 21

const

στσ.

yxyx

θ , and Eqs. (a) and (b), we have

______________________________________________________________________________________

SOLUTION (1.33)

We have

τ

2 2( 70)

θ

tan 2 0.583xy

= = = −

p

σ σ

− − −

x y

50 ( 190)

2 30.24o

p θ = − and 15.12o

p θ = −

(CONT.)

______________________________________________________________________________________

13

From Advanced Mechanics of Materials and Applied Elasticity, 6/e, by Ansel C. Ugural and Saul K. Fenster (9780135793886)

Copyright © 2020 Pearson Education, Inc. All rights reserved.______________________________________________________________________________________

1.33 (CONT.)

Equations (1.18):

19050

σ

+= +

19050

2

2

cos(

o

70)26.30

sin(

x

o

)26.30

= − + + = =

70 103.65 35.275 68.93 MPa σ

1

= + − = − =

y x y x σ σ σ σ σ

‘ ‘ 2 208.9 MPa

208.9 MPa

15.13o

68.92 MPa

______________________________________________________________________________________

SOLUTION (1.34)

τ

=

σ

2

yx τ

+

max )( xy

2

Substituting the given values

2

2

10060

+= +

( )2

τ

140 xy

2

or

xy τ =

,max 114.89 MPa

______________________________________________________________________________________

SOLUTION (1.35)

Transform from o

θ to o

60=

0=

θ with ‘ ‘ 20 MPa, 60 MPa x y σ σ = − =

,

‘ ‘ 22 MPa

60−=

x y τ = − , and o

θ . Use Eqs. (1.18):

20 60 20 60

x σ − + − − = + − − − =

2 2 cos 2( 60 ) 22sin 2( 60 ) 59 MPao o

‘ ‘ 19 MPa

y x y x σ σ σ σ = + − = −

xy τ = −

23.6 MPa

y

19 MPa

23.6 MPa

59 MPa

x

______________________________________________________________________________________

14

From Advanced Mechanics of Materials and Applied Elasticity, 6/e, by Ansel C. Ugural and Saul K. Fenster (9780135793886)

Copyright © 2020 Pearson Education, Inc. All rights reserved.______________________________________________________________________________________

SOLUTION (1.36)

σycos60o

σy

14 MPa

τxy

σxsin60o

30 MPa

τxycos60o

30 MPa

Area =1

60o

Figure (a)

τxysin60o

Figure (b)

( a ) Figure (a):

σ = =

14sin 60 12.12 MPao

y

14cos 60 7 MPao

xy τ = =

Figure (b):

=

60

o

F τ

sin

o

12.12=

cos

060

y

xy

or

7 MPa

xy τ = (as before)

o

sino

−= 060

73060

+

=

x F σ

cos

x

or

x σ =

38.68 MPa

( b ) Equation (1.20) is therefore:

1

12.1268.38

+

σ

±=

12.1268.38

2,1 7)( +

2

2

[ ]2

2

or 1 2 40.41 MPa, 10.39 MPa σ σ = =

Also,

θ

1

)7(2

=

1 =

tan 12.1268.38

p 9.13

o

2

Note: Eq. (1.18a) gives, 40.41 MPa

x σ =

.

Thus,

θ

p 9.13′=

o

10.39 MPa

40.41 MPa

x’

x

θp

______________________________________________________________________________________

15

From Advanced Mechanics of Materials and Applied Elasticity, 6/e, by Ansel C. Ugural and Saul K. Fenster (9780135793886)

Copyright © 2020 Pearson Education, Inc. All rights reserved.______________________________________________________________________________________

SOLUTION (1.37)

σy

τxy

σx Figure (a)

Figure (a):

x σ = =

100cos 45 70.7 MPao

σ = =

100sin 45 70.7 MPao

y

xy τ = =

100cos 45 70.7 MPao

Now, Eqs. (1.18) give (Fig. b):

70.7 0 70.7sin 240 9.47 MPao

x σ = + + =

x y τ = − + ‘ ‘ 0 70.7 cos 240 35.35 MPao

= −

σ = − − =

70.7 0 70.7sin 240 131.9 MPao

y

y σy

σx’ τx’y’

x’

σx

y’

σy’

τxy

Figure (b)

n

30o

x

m

______________________________________________________________________________________

SOLUTION (1.38)

σ = − = −

70sin 30 35 MPao

y

xy τ = =

70cos30 60.6 MPao

( a ) Figure (a):

x

x F σ

+−=

0)866.0(6.605.0150=

or 195 MPa

x σ =

35cos30o

60.6cos30o

30o

60.6sin30o

150 MPa Figure (a)

σxsin30o

Area=1

(CONT.)

______________________________________________________________________________________

16

From Advanced Mechanics of Materials and Applied Elasticity, 6/e, by Ansel C. Ugural and Saul K. Fenster (9780135793886)

Copyright © 2020 Pearson Education, Inc. All rights reserved.

There are no reviews yet.

Add a review

Be the first to review “Solution Manual Advanced Mechanics of Materials and Applied Elasticity Ugural Fenster 6th Edition – Updated 2024”

Your email address will not be published. Required fields are marked *

Category:
Updating…
  • No products in the cart.